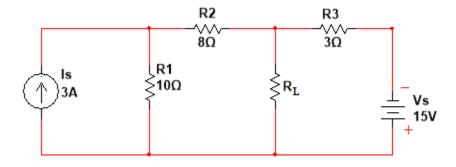
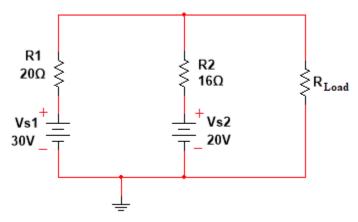

Introduction to circuit analysis

Homework 8 – Thevenin's Theorem, Norton's equivalent, and MPT

Instructions:


- YOU HAVE TO SHOW ALL WORK IN ORDER TO RECEIVE FULL CREDIT
- o All answer must be in engineering notation rounded off to the hundredth

Question 1) For the following circuit below:


- a. Determine the Thevenin's equivalent circuit
- b. Using the Thevenin's equivalent circuit, determine the voltage through the load resistor $R_L = 10 \Omega$
- c. Using the Thevenin's equivalent circuit, determine the load resistor if the load voltage drop through it is 8 V
- d. According to the Thevenin's equivalent circuit, find the maximum power transfer to R_L
- e. According to the Thevenin's equivalent circuit, find the Norton equivalent circuit

Question 2) For the following circuit,

- a. Find the Thevenin's equivalent circuit for the load resistor R_L
- b. According to the Thevenin's equivalent circuit, what will be the voltage through load resistor if $R_L = 5 \Omega$?
- c. Using the Thevenin's equivalent circuit, determine the load resistor if the load voltage drop through it is 10 V
- d. According to the Thevenin's equivalent circuit, what will be the maximum power transfer through load resistor?
- e. According to the Thevenin's equivalent circuit, find the Norton equivalent circuit

Question 3) For the following circuit below:

- a. Determine the Thevinin's equivalent circuit
- b. Using the Thevenin's equivalent circuit, determine the load resistor if the load voltage drop through it is 10 V
- c. Using the Thevenin's equivalent circuit, find the maximum power transfer to R_{Load}
- d. Using the Thevenin's equivalent circuit, find the Norton equivalent circuit