Student's Name:

Introduction to circuit analysis

Homework 2 – Basic Circuit Terminology and basic laws

Instructions:

- You have to show all work in order to receive full credit
- All answer must be in engineering notation rounded off to the **hundredth**
- 1. Convert 0.0000187361 km to mm (millimeters)

2. Convert 305184 Ω to $k\Omega$

3. Given the voltage formula $V = \frac{w}{Q}$ If the potential energy between two points is 8.6 V, how much energy is expected to bring 107.25 μ C from one point to the other?

For question 4 and 5. Given the current formula $I = \frac{Q}{t}$

- 4. If a current of 90.63 nA exists for 1.7 hours in a wire, how many coulombs of charge have passed through the wire?
- 5. How many minutes will a charge of 2.63 C passes through a light bulb if the current is constant at $250.92\,\mu\text{A}$

Ohm's Law

Question 6-8	8	→
--------------	---	----------

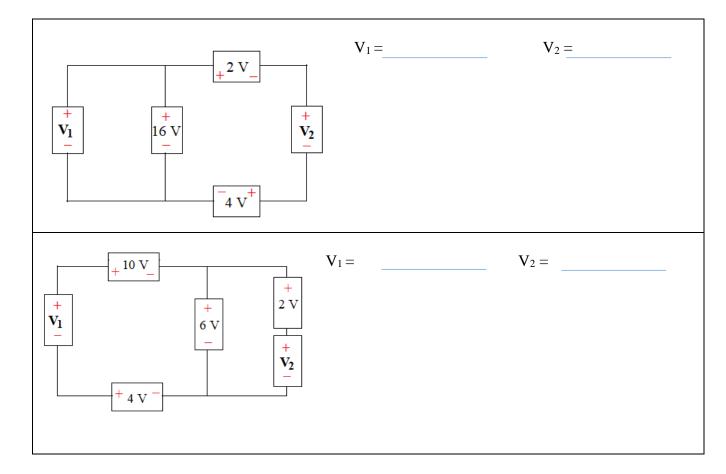
6.	What is the resistance if the current through the resistor is 11.2 mA and the voltage drop across it is 101.5 V?
7.]	If a voltmeter has an internal resistance of 8.2 k Ω find the current through the meter when it reads 11.5 V.
8.	In a TV camera, a current of 6.2 mA passes through a resistor of 1.8 M Ω , What is the voltage drop

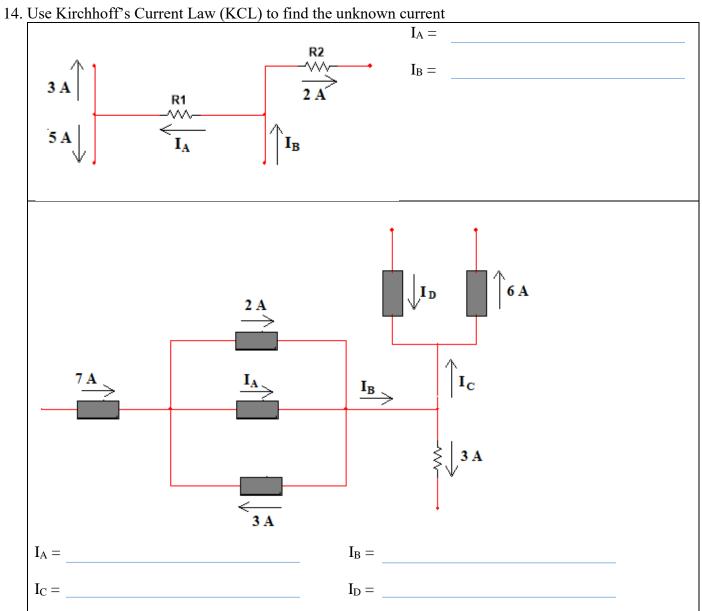
across the resistor?

Power Law Question 9-10 →

9. The power consumed by a 39 k Ω resistor is 23.5 μ W. What is the current level through the resistor?

10. A 2.2 k Ω resistor in a stereo system dissipates 42 mW of power. What is the voltage across the resistor?


Question 11-12 →


11. What are the "hot" resistance level and current rating of a 110 V, 80 W bulb?

12. What is the power delivered by a 10.85 V battery if the current drain is 26.3 mA?

Kirchhoff's t Laws

13. Use Kirchhoff's Voltage Law (KVL) to find the unknown voltage

Circuit Terminologies

15. For the following circuit,

R2 ─────────		V2 - -	+
R1 \$ + + + + + + + + + + + + + + + + + +	фи	≷R3	≥ R4 = V3

The number of independent loops is:

The number of elements is:

The number of nodes is:

------ Homework 2 Ends Here -----