3.7. Responsive Webpages

Making a webpage responsive to the screen size is an important features in web technology.
Nowadays, web pages open on devices with different screen sizes, for example a desktop
computer screen has a width of 1200px, a Samsung Galaxy Tab 10.1 tablet has the width of
900px, and the width of a Samsung Galaxy J7 smartphone is 720px . Therefore, it is important
that when you design a webpage, the elements on the webpage can adjust to the screen of the
device. You can visit: http://screensiz.es/ to view more devices width.

For app view development, it is an important to add the following line:
<meta name="viewport" content="width=device-width, initial-scale=1.0">

The viewport is the user's visible area of a web page. It varies with the device, and will be
smaller on a mobile phone than on a computer screen. viewport element gives the browser
instructions on how to control the page's dimensions and scaling.

The width=device-width part sets the width of the page to follow the screen-width of the
device (which will vary depending on the device).

The initial-scale=1.0 part sets the initial zoom level when the page is first loaded by the
browser.

weecs N Telenor 12.29 7% senco N Telanor ¥ 12.29 7 %

Lorem ipsum dolor 50 amet, consectetuer
adipiscing elit, sed diam nonumimy nibh
cuismaxd tincidumt ut lnoreet dolore MEIgniL
aliquarn erat volutpat. Uit wisi enim ad minim
veniam, quis nostrud exerct ation ullamcorper
suscipit lobontis nisl ut aliquip ex ca commodo
consequal. Duis autem vel eum inune dolor in
hendrerit in valputate velit esse molestic
consequat, vel illum dolore eu feugiat nulla
facilizis at vero eros et accumsan et iusto odio
digmissim qui blandit pragsent luptatum zenl
dielenit augue duis dolore te feugait nulla
facilisi, Nam liber tempor cum solula nobis
eleifend ontion conene nihil imnesdiet domine

Without the viewport meta tag With the viewport meta tag

Chapter 3 — Cascading Style Sheet, CSS Page 66 of 98
Material prepared by Prof. Huixin Wu


http://screensiz.es/

Flexbox container

The Flexible Box Layout Module, makes it easier to design flexible responsive
layout structure without using float or positioning. Flexbox is a one-dimension layout
method for layout g out items in rows or columns. It allows us to distribute space dynamically

across elements of an unknown size, hence the term flex.

Example) Create a flex container for three square division

<section class="flex_container">
<div class="sqr"></div>
<div class="sqr"></div>
<div class="sqr"></div>
</section>

HTML

.flex_container{

border: solid gray;

width: 80%;

margin: 10%;
}
.sqr{width: 100px; height: 100px;}
.sgr:nth-child(1){background-color: magenta;}
.sgqr:nth-child(2){background-color: olive;}
.sgr:nth-child(3){background-color: orange;}

CSS

without applying a display: flex to the flex container, the output will look as:

Now, if we add the display:flex; property to the flex container, the three division will wrap, from

left to right, around the flex container

.flex_container{
border: solid gray;
width: 80%;
margin: 10%;
display: flex;

Chapter 3 — Cascading Style Sheet, CSS
Material prepared by Prof. Huixin Wu

Page 67 of 98



We can also change the direction from right to left by adding the property flex-direction: row-
reverse;

.flex_container{
border: solid gray;
width: 80%;
margin: 10%;
display: flex;
flex-direction: row-reverse;

justify-content property

The CSS justify-content property defines how the browser distributes space between and around
content items along the main-axis of a flex container, and the inline axis of a grid container.
justify-content uses different values such as: start, center, space-between,
space-around, and space-evenly

.flex_container{
border: solid gray;
width: 80%;
margin: 10%;
display: flex;
flex-direction: row;
justify-content: center;

Chapter 3 - Cascading Style Sheet, CSS Page 68 of 98
Material prepared by Prof. Huixin Wu



.flex_container{
border: solid gray;
width: 80%;
margin: 10%;
display: flex;
flex-direction: row;
justify-content: space-between;
display: flex;

flex-direction: row;

justify-content: space-around;
display: flex;

flex-direction: row;

justify-content: space-evenly;

.flex_container{
border: solid gray;
width: 80%;
margin: 10%;

.flex_container{
border: solid gray;
width: 80%;
margin: 10%;

Flex-wrap property
The flex-wrap property specifies whether the flexible items should wrap or not.

Example) from the previous example, let change the width of the divisions to 500px.

Chapter 3 - Cascading Style Sheet, CSS Page 69 of 98
Material prepared by Prof. Huixin Wu



For this case, if we change the browser window to a smaller view, all three divisions it will
squeeze to fit the width of the flex_container

If we do not want the divisions to squeeze, but instead, we want to keep the division’s width and
have the divisions to wrap around the fLex_container, then we can add the flex-wrap:wrap;
property to the flex_container

Example) from the previous example, if we set the height of the fLex_container to 200px
and the flex-direction to column,

.flex_container{
border: solid gray;
width: 80%;
margin: 10%;
height: 200px;
display: flex;
flex-direction: column;
justify-content: space-evenly;

¥

all three division at the container will squeeze to fit the height of the container. The output will
look as:

Chapter 3 - Cascading Style Sheet, CSS Page 70 of 98
Material prepared by Prof. Huixin Wu



Now, if we want to keep the height of each divisions, we can use flex-wrap:wrap to allow the
flexible divisions to wrap within the flex_container

.flex_container{
border: solid gray;
width: 86%;
margin: 10%;
height: 200px;
display: flex;
flex-direction: column;
justify-content: space-evenly;
flex-wrap: wrap;

Align-item property
Align-items property sets the align-self value on all direct children as a group. In flexbox, it
controls the alignment of items inside the flex container on the cross axis.

Example) using the three divisions, set the divisions to align to the end of the flex container.
Without using the align-1item property,

.flex_container{
border: solid gray;
width: 860%;
height: 200px;
margin: 10%;
display: flex;
flex-direction: row;
justify-content: center;

Chapter 3 - Cascading Style Sheet, CSS Page 71 of 98
Material prepared by Prof. Huixin Wu



By adding the align-items:flex-end; to fLex container

.flex_container{
border: solid gray;
width: 86%;
height: 200px;
margin: 10%;
display: flex;
flex-direction: row;
justify-content: center;
align-items:flex-end;

We can also set the divisions to the center of the cross axis of the flex container by using align-
items:center;

.flex_container{
border: solid gray;
width: 86%;
height: 200px;
margin: 10%;
display: flex;
flex-direction: row;
justify-content: center;
align-items:center;

Chapter 3 - Cascading Style Sheet, CSS Page 72 of 98
Material prepared by Prof. Huixin Wu



align-content property

align-content property sets the distribution of space between and around content items along a
flexbox’s cross-axis or a grid’s block axis. The align-content property modifies the behavior of
the flex-wrap property. It is similar to align-items, but instead of aligning flex items, it aligns
flex lines. It sets the distribution of space between and around content items along a flexbox’s
cross-axis or a grid’s block axis.

Note: There must be multiple lines of items for this property to have any effect!

Example) use the previous example and change the width of the division to 300px

.flex_container{
border: solid gray;
width: 80%;
height: 300px;
margin: © auto;
display: flex;
flex-direction: row;
justify-content: center;
align-items:flex-end;
flex-wrap: wrap;

}

.sgr{width: 300px; height: 100px;}

Now, by adding the property align-content: space-between;

Chapter 3 - Cascading Style Sheet, CSS Page 73 of 98
Material prepared by Prof. Huixin Wu


https://www.w3schools.com/cssref/css3_pr_flex-wrap.php
https://www.w3schools.com/cssref/css3_pr_align-items.php

Now, if we change align-content: center;

align-self property

The align-self CSS property overrides a grid or flex item's align-items value. In Grid, it aligns
the item inside the grid area. In Flexbox, it aligns the item on the cross axis. The align-

self property specifies the alignment for the selected item inside the flexible container.

Example) using the previous example, align the second division to the bottom of the flex
container

.flex_container{
border: solid gray;
width: 86%;
height: 300px;
margin: @ auto;
display: flex;
flex-direction: row;
justify-content: center;
align-items:center;
flex-wrap: wrap;

.sqgr:nth-child(2){background-color: olive; align-self: flex-end;}

Chapter 3 - Cascading Style Sheet, CSS Page 74 of 98
Material prepared by Prof. Huixin Wu



@media query

Media query is a CSS technique introduced in CSS3 and it is used to make responsive pages.
It uses the @media rule to include a block of CSS properties only if a certain condition is true.

When using @media, instead of changing styles when the width gets smaller than 800px, we
should change the design when the width gets larger than 800px. This will make our design
Mobile First. The syntax code will look as:

@media only screen and (min-width: 80@px){

}

Between the curly brackets should go the CSS attributes of the elements that will changed when
the screen has the width of 800px or greater.

Mobile First means designing for mobile before designing for desktop or any other device (This
will make the page display faster on smaller devices). Some web developer prepares to design a
mobile view first as it moves toward the tablet’s, laptop’s, and desktop’s screen size. Therefore,
when we apply @media query, the screen size has property min-width: 8e@px. On the other
hand, since the material in this lab manual was designed from a desktop computer screen view,
then we can design from the desktop computer screen toward the tablet’s and smartphone’s
screen size. For this, instead of using min-width:800px we use max-width: 80@px

Also, if we are designing from mobile view first, we can change the browser view to mobile
view by using the function key F12 and then click on the Toggle device toolbar

& Layout Design X +

C Y @ File| CfUsers/Student/Desktop/ET71...

i Apps Schedule An Appoi.. [ QCC  [08 QCCemail Webull

Chapter 3 — Cascading Style Sheet, CSS Page 75 of 98
Material prepared by Prof. Huixin Wu



Once clicked on the Toggle device toolbar, we can select the size of the mobile view:

Dimensions: iPad 763 1024

Let us to pick the iPhone X screen size. In this case, since iPhone X has a width of 375px, then
we can design a view up to 375px or 450px so the design can be used to other smartphone
screen.

Dimensions: iPho... ¥

Responsive

Moto G4

Galaxy 55

Pixel 2

Pixel 2 X

iPhone 5/5E
iPhone 6/7/38
iPhone 6/7/8 Plus
iPhone X

iPad

iPad Pro

Surface Duo

Galaxy Fold

Mest Hub
Mest Hub Max

Example) Create the following three different layout, for smartphone view, tablet, and laptop or
desktop view, using media query. The sizes for smartphone is up to 450px, for tablet is from
450px up to 800px, and for laptop of desktop view from 800px and up. Starts designing from
smartphone view.

Chapter 3 — Cascading Style Sheet, CSS Page 76 of 98
Material prepared by Prof. Huixin Wu



New York City

External link 1
External link 2
External link 3

New York City compnses 5 boroughs sitting
where the Hudson River meets the Atlantic
Ocean. At its core is Manhattan_ a densely
populated borough that’s among the world’s
major commercial, financial and cultural
centers. Its iconic sites include skyscrapers
such as the Empire State Building and
sprawling Central Park. Broadway theater is
staged in neon-lit Times Square.

HTML
<!DOCTYPE html>

<html lang="en" dir="1ltr">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link href="index.css" rel="stylesheet" type="text/css"/>
<title>Layout Design</title>
</head>
<body>
<header>New York City </header>
<div class="container">
<div class="info_body">
<nav>
<a href="#">External link 1</a>
<a href="#">External 1link 2</a>
<a href="#">External link 3</a>
</nav>
<div class="figure">
<img src="images/image4.jpg" alt="NYC image">
</div>
</div>
<section>New York City comprises 5 boroughs sitting where the Hudson River
meets the Atlantic Ocean. At its core is Manhattan, a densely populated
borough that’s among the world’s major commercial, financial and cultural
centers. Its iconic sites include skyscrapers such as the Empire State
Building and sprawling Central Park. Broadway theater is staged in neon-1it
Times Square. </section>
</div>
<footer> </footer>
</body>
</html>




CSS

*{box-sizing: border-box;}
img{width: 100%; height: 100%;}
/* --- smartphone view - small view --- */
@media only screen and (max-width: 450px){
header{
background-color: purple;
height: 3em;
font-size: 2em;
text-align: center;
padding-top: 1lem;
color: white;
¥
.container{
margin-top: 2em;
height: 35em;
}
nav af{
text-decoration: none;
display: block;
padding: ©.3em 0.6em;
background-color: lightblue;
font-size: 1.1lem;
margin: @.3em Oem;
text-align: center;
}
section{
height:auto;
margin-top: lem;
background-color: lightblue;
padding: lem;
font-size: 1.1lem;
¥
footer{
height: 5em;
background-color: blue;
margin-top: lem;
}
}

Once the CSS file is complete with the smartphone or small screen view, we can separate the
styling that are used for all screen size outside the @media query

Chapter 3 — Cascading Style Sheet, CSS Page 78 of 98
Material prepared by Prof. Huixin Wu



*{box-sizing: border-box;}

CSS

img{width: 100%; height: 100%;}
header{
background-color: purple;
text-align: center;
color: white;
height: 3em;
font-size: 3em;
padding-top: 1em;
}
.container{
height: 35em;
}
nav af{
text-decoration: none;
background-color: lightblue;
text-align: center;
display: block;
}
section{
height:auto;
background-color: lightblue;
}
footer{
background-color: blue;
}
/* --- smartphone view - small view --- */
@media only screen and (max-width: 450px){
.container{
margin-top: lem;
¥
header{
font-size: 2em;
}
nav af
padding: ©.3em 0.6em;
font-size: 1.1lem;
margin: ©.3em Oem;

}
.figure{margin-top: 1lem;}
section{
margin-top: lem;
padding: 1lem;
font-size: 1.1em;
}
footer{
height: 5em;
margin-top: lem;
}
}

Once the smartphone view is set, we can create the following layout for a tablet screen. For this,

we set the screen size in between 450px up to 800px:

@media only screen and (max-width: 800px) and (min-width:450px){

Chapter 3 — Cascading Style Sheet, CSS
Material prepared by Prof. Huixin Wu

Page 79 of 98



Inside the @media query, we can work on styling the elements in the layout until it looks like the
view below:

New York Ci
y Now we can create a breakpoint for a desktop

view. For this, we can set the @media query to

External link 1 800px and up.

External link 2 @media only screen and (min-
width:800px){

External link 3
}

New York City comprises 5 boroughs sitting where the
Hudson River meets the Atlantic Ocean. At its core iz
Manhattan, a densely populated borough that’s among the
world’s major commercial, financial and cultural centers.
Its iconic sites include skyscrapers such as the Empire State
Building and sprawling Central Park Broadway theater is
staged in neon-lit Times Square.

Once again, we work on styling the elements in the layout within the @media query until it looks
like the view below:

New York City

External link 1 New York City comprises 5 boroughs sitting where the Hudson River meets the
Atlantic Ocean. At its core is Mant a densely populated borough that’s
among the world’s major commercial. financial and cultural centers. Its iconic

A sites include skyscrapers such as the Emp?re State Bui}ding and sprawling

. Central Park. Broadway theater is staged in neon-lit Times Square.

External link 3

For this example, we created a breakpoints media to three screen sides, but always we can add as
many breakpoints as we like. Also, the layout design of each of the screen side is up to the
designer decision but it is always recommended to have the layout design before writing the
HTML and CSS script.

Chapter 3 — Cascading Style Sheet, CSS Page 80 of 98
Material prepared by Prof. Huixin Wu



