

Chapter 3 – Cascading Style Sheet, CSS Page 66 of 98
Material prepared by Prof. Huixin Wu

3.7. Responsive Webpages

Making a webpage responsive to the screen size is an important features in web technology.

Nowadays, web pages open on devices with different screen sizes, for example a desktop

computer screen has a width of 1200px, a Samsung Galaxy Tab 10.1 tablet has the width of

900px, and the width of a Samsung Galaxy J7 smartphone is 720px . Therefore, it is important

that when you design a webpage, the elements on the webpage can adjust to the screen of the

device. You can visit: http://screensiz.es/ to view more devices width.

For app view development, it is an important to add the following line:

<meta name="viewport" content="width=device-width, initial-scale=1.0">

The viewport is the user's visible area of a web page. It varies with the device, and will be

smaller on a mobile phone than on a computer screen. viewport element gives the browser

instructions on how to control the page's dimensions and scaling.

The width=device-width part sets the width of the page to follow the screen-width of the

device (which will vary depending on the device).

The initial-scale=1.0 part sets the initial zoom level when the page is first loaded by the

browser.

http://screensiz.es/

Chapter 3 – Cascading Style Sheet, CSS Page 67 of 98
Material prepared by Prof. Huixin Wu

Flexbox container

The Flexible Box Layout Module, makes it easier to design flexible responsive
layout structure without using float or positioning. Flexbox is a one-dimension layout

method for layout g out items in rows or columns. It allows us to distribute space dynamically

across elements of an unknown size, hence the term flex.

Example) Create a flex container for three square division

without applying a display: flex to the flex container, the output will look as:

Now, if we add the display:flex; property to the flex container, the three division will wrap, from

left to right, around the flex container

.flex_container{
 border: solid gray;
 width: 80%;
 margin: 10%;
 display: flex;
}

<section class="flex_container">
 <div class="sqr"></div>
 <div class="sqr"></div>
 <div class="sqr"></div>
</section>

HTML

.flex_container{
 border: solid gray;
 width: 80%;
 margin: 10%;
}
.sqr{width: 100px; height: 100px;}
.sqr:nth-child(1){background-color: magenta;}
.sqr:nth-child(2){background-color: olive;}
.sqr:nth-child(3){background-color: orange;}

CSS

Chapter 3 – Cascading Style Sheet, CSS Page 68 of 98
Material prepared by Prof. Huixin Wu

We can also change the direction from right to left by adding the property flex-direction: row-

reverse;

.flex_container{
 border: solid gray;
 width: 80%;
 margin: 10%;
 display: flex;
 flex-direction: row-reverse;
}

justify-content property

The CSS justify-content property defines how the browser distributes space between and around

content items along the main-axis of a flex container, and the inline axis of a grid container.

justify-content uses different values such as: start, center, space-between,

space-around, and space-evenly

.flex_container{
 border: solid gray;
 width: 80%;
 margin: 10%;
 display: flex;
 flex-direction: row;
 justify-content: center;
}

Chapter 3 – Cascading Style Sheet, CSS Page 69 of 98
Material prepared by Prof. Huixin Wu

.flex_container{
 border: solid gray;
 width: 80%;
 margin: 10%;
 display: flex;
 flex-direction: row;
 justify-content: space-between;
}

.flex_container{
 border: solid gray;
 width: 80%;
 margin: 10%;
 display: flex;
 flex-direction: row;
 justify-content: space-around;
}

.flex_container{
 border: solid gray;
 width: 80%;
 margin: 10%;
 display: flex;
 flex-direction: row;
 justify-content: space-evenly;
}

Flex-wrap property

The flex-wrap property specifies whether the flexible items should wrap or not.

Example) from the previous example, let change the width of the divisions to 500px.

Chapter 3 – Cascading Style Sheet, CSS Page 70 of 98
Material prepared by Prof. Huixin Wu

For this case, if we change the browser window to a smaller view, all three divisions it will

squeeze to fit the width of the flex_container

If we do not want the divisions to squeeze, but instead, we want to keep the division’s width and

have the divisions to wrap around the flex_container, then we can add the flex-wrap:wrap;

property to the flex_container

Example) from the previous example, if we set the height of the flex_container to 200px

and the flex-direction to column,

 .flex_container{
 border: solid gray;
 width: 80%;
 margin: 10%;
 height: 200px;
 display: flex;
 flex-direction: column;
 justify-content: space-evenly;
 }

all three division at the container will squeeze to fit the height of the container. The output will

look as:

Chapter 3 – Cascading Style Sheet, CSS Page 71 of 98
Material prepared by Prof. Huixin Wu

Now, if we want to keep the height of each divisions, we can use flex-wrap:wrap to allow the

flexible divisions to wrap within the flex_container

 .flex_container{
 border: solid gray;
 width: 80%;
 margin: 10%;
 height: 200px;
 display: flex;
 flex-direction: column;
 justify-content: space-evenly;
 flex-wrap: wrap;
 }

Align-item property

Align-items property sets the align-self value on all direct children as a group. In flexbox, it

controls the alignment of items inside the flex container on the cross axis.

Example) using the three divisions, set the divisions to align to the end of the flex container.

Without using the align-item property,

 .flex_container{
 border: solid gray;
 width: 80%;
 height: 200px;
 margin: 10%;
 display: flex;
 flex-direction: row;
 justify-content: center;
 }

Chapter 3 – Cascading Style Sheet, CSS Page 72 of 98
Material prepared by Prof. Huixin Wu

By adding the align-items:flex-end; to flex_container

 .flex_container{
 border: solid gray;
 width: 80%;
 height: 200px;
 margin: 10%;
 display: flex;
 flex-direction: row;
 justify-content: center;
 align-items:flex-end;
 }

We can also set the divisions to the center of the cross axis of the flex container by using align-
items:center;

 .flex_container{
 border: solid gray;
 width: 80%;
 height: 200px;
 margin: 10%;
 display: flex;
 flex-direction: row;
 justify-content: center;
 align-items:center;
 }

Chapter 3 – Cascading Style Sheet, CSS Page 73 of 98
Material prepared by Prof. Huixin Wu

align-content property

align-content property sets the distribution of space between and around content items along a

flexbox’s cross-axis or a grid’s block axis. The align-content property modifies the behavior of

the flex-wrap property. It is similar to align-items, but instead of aligning flex items, it aligns

flex lines. It sets the distribution of space between and around content items along a flexbox’s

cross-axis or a grid’s block axis.

Note: There must be multiple lines of items for this property to have any effect!

Example) use the previous example and change the width of the division to 300px

 .flex_container{
 border: solid gray;
 width: 80%;
 height: 300px;
 margin: 0 auto;
 display: flex;
 flex-direction: row;
 justify-content: center;
 align-items:flex-end;
 flex-wrap: wrap;
 }

 .sqr{width: 300px; height: 100px;}

Now, by adding the property align-content: space-between;

https://www.w3schools.com/cssref/css3_pr_flex-wrap.php
https://www.w3schools.com/cssref/css3_pr_align-items.php

Chapter 3 – Cascading Style Sheet, CSS Page 74 of 98
Material prepared by Prof. Huixin Wu

Now, if we change align-content: center;

align-self property

The align-self CSS property overrides a grid or flex item's align-items value. In Grid, it aligns

the item inside the grid area. In Flexbox, it aligns the item on the cross axis. The align-

self property specifies the alignment for the selected item inside the flexible container.

Example) using the previous example, align the second division to the bottom of the flex

container

 .flex_container{
 border: solid gray;
 width: 80%;
 height: 300px;
 margin: 0 auto;
 display: flex;
 flex-direction: row;
 justify-content: center;
 align-items:center;
 flex-wrap: wrap;
 }
.sqr:nth-child(2){background-color: olive; align-self: flex-end;}

Chapter 3 – Cascading Style Sheet, CSS Page 75 of 98
Material prepared by Prof. Huixin Wu

@media query

Media query is a CSS technique introduced in CSS3 and it is used to make responsive pages.

It uses the @media rule to include a block of CSS properties only if a certain condition is true.

When using @media, instead of changing styles when the width gets smaller than 800px, we

should change the design when the width gets larger than 800px. This will make our design

Mobile First. The syntax code will look as:

@media only screen and (min-width: 800px){

}

Between the curly brackets should go the CSS attributes of the elements that will changed when

the screen has the width of 800px or greater.

Mobile First means designing for mobile before designing for desktop or any other device (This

will make the page display faster on smaller devices). Some web developer prepares to design a

mobile view first as it moves toward the tablet’s, laptop’s, and desktop’s screen size. Therefore,

when we apply @media query, the screen size has property min-width: 800px On the other

hand, since the material in this lab manual was designed from a desktop computer screen view,

then we can design from the desktop computer screen toward the tablet’s and smartphone’s

screen size. For this, instead of using min-width:800px we use max-width: 800px

Also, if we are designing from mobile view first, we can change the browser view to mobile

view by using the function key F12 and then click on the Toggle device toolbar

Chapter 3 – Cascading Style Sheet, CSS Page 76 of 98
Material prepared by Prof. Huixin Wu

Once clicked on the Toggle device toolbar, we can select the size of the mobile view:

Let us to pick the iPhone X screen size. In this case, since iPhone X has a width of 375px, then

we can design a view up to 375px or 450px so the design can be used to other smartphone

screen.

Example) Create the following three different layout, for smartphone view, tablet, and laptop or

desktop view, using media query. The sizes for smartphone is up to 450px, for tablet is from

450px up to 800px, and for laptop of desktop view from 800px and up. Starts designing from

smartphone view.

Chapter 3 – Cascading Style Sheet, CSS Page 77 of 98
Material prepared by Prof. Huixin Wu

<!DOCTYPE html>
<html lang="en" dir="ltr">
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <link href="index.css" rel="stylesheet" type="text/css"/>
 <title>Layout Design</title>
 </head>
 <body>
 <header>New York City </header>
 <div class="container">
 <div class="info_body">
 <nav>
 External link 1
 External link 2
 External link 3
 </nav>
 <div class="figure">

 </div>
 </div>

<section>New York City comprises 5 boroughs sitting where the Hudson River
meets the Atlantic Ocean. At its core is Manhattan, a densely populated
borough that’s among the world’s major commercial, financial and cultural
centers. Its iconic sites include skyscrapers such as the Empire State
Building and sprawling Central Park. Broadway theater is staged in neon-lit
Times Square. </section>

 </div>
 <footer> </footer>
 </body>
</html>

HTML

Chapter 3 – Cascading Style Sheet, CSS Page 78 of 98
Material prepared by Prof. Huixin Wu

Once the CSS file is complete with the smartphone or small screen view, we can separate the

styling that are used for all screen size outside the @media query

*{box-sizing: border-box;}
img{width: 100%; height: 100%;}
/* --- smartphone view - small view --- */
@media only screen and (max-width: 450px){
 header{
 background-color: purple;
 height: 3em;
 font-size: 2em;
 text-align: center;
 padding-top: 1em;
 color: white;
 }
 .container{
 margin-top: 2em;
 height: 35em;
 }
 nav a{
 text-decoration: none;
 display: block;
 padding: 0.3em 0.6em;
 background-color: lightblue;
 font-size: 1.1em;
 margin: 0.3em 0em;
 text-align: center;
 }
 section{
 height:auto;
 margin-top: 1em;
 background-color: lightblue;
 padding: 1em;
 font-size: 1.1em;
 }
 footer{
 height: 5em;
 background-color: blue;
 margin-top: 1em;
 }
}

CSS

Chapter 3 – Cascading Style Sheet, CSS Page 79 of 98
Material prepared by Prof. Huixin Wu

Once the smartphone view is set, we can create the following layout for a tablet screen. For this,

we set the screen size in between 450px up to 800px:

@media only screen and (max-width: 800px) and (min-width:450px){

}

*{box-sizing: border-box;}
img{width: 100%; height: 100%;}
header{
 background-color: purple;
 text-align: center;
 color: white;
 height: 3em;
 font-size: 3em;
 padding-top: 1em;
}
.container{
 height: 35em;
}
nav a{
 text-decoration: none;
 background-color: lightblue;
 text-align: center;
 display: block;
}
section{
 height:auto;
 background-color: lightblue;
}
footer{
 background-color: blue;
}
/* --- smartphone view - small view --- */
@media only screen and (max-width: 450px){
 .container{
 margin-top: 1em;
 }
 header{
 font-size: 2em;
 }
 nav a{
 padding: 0.3em 0.6em;
 font-size: 1.1em;
 margin: 0.3em 0em;
 }
 .figure{margin-top: 1em;}
 section{
 margin-top: 1em;
 padding: 1em;
 font-size: 1.1em;
 }
 footer{
 height: 5em;
 margin-top: 1em;
 }
}

CSS

Chapter 3 – Cascading Style Sheet, CSS Page 80 of 98
Material prepared by Prof. Huixin Wu

Inside the @media query, we can work on styling the elements in the layout until it looks like the

view below:

Now we can create a breakpoint for a desktop

view. For this, we can set the @media query to

800px and up.

@media only screen and (min-

width:800px){

}

Once again, we work on styling the elements in the layout within the @media query until it looks

like the view below:

For this example, we created a breakpoints media to three screen sides, but always we can add as

many breakpoints as we like. Also, the layout design of each of the screen side is up to the

designer decision but it is always recommended to have the layout design before writing the

HTML and CSS script.

