

Chapter 3 – Cascading Style Sheet, CSS Page 52 of 98
Material prepared by Prof. Huixin Wu

3.6. Understand CSS animation

CSS transitions

CSS transitions are one of the ways we can create animation with CSS, even though they are not

called animations. By definition, animation means causing change over time and transitions

absolutely do that. They just do it in a little bit of a different way than CSS keyframe animations

do.

transition as property

To create a transition effect using the transition property, we must specify two things:

 The CSS property you want to add an effect to

 The duration of the effect

Note: If the duration part is not specified, the transition will have no effect, because the default

value is 0.

Example) add transition property of 3 second to a square figure. The square figure changes to a

circle when it is hovered

We can also transition a specific property of an element just by adding the property name to the

transition. To do so, we just need to make sure that the property is already part of the element.

Example) from the previous example, transition the background-color of the element

We can also use transition using different properties. We separate the properties using a comma.

When hover the square

<div class="square"> </div> HTML

.square{height:100px; width:100px; background-color:magenta; transition: 3s;}
.square:hover{background-color: olive; border-radius: 50%; }

CSS

.square{height:100px; width:100px; background-color:magenta; transition:
background-color 3s;}
.square:hover{background-color: olive; border-radius: 50%; }

CSS

Chapter 3 – Cascading Style Sheet, CSS Page 53 of 98
Material prepared by Prof. Huixin Wu

Example) from the previous example, add a transition of 1 second to the border-radius

CSS transform property
The transform property applies a 2D or 3D transformation to an element. This property allows you to

rotate, scale, move, skew, etc., elements.

Transform property has values as:

translate(x,y) Defines a 2D translation

translateX(x) Defines a translation, using only the value for the X-axis

translateY(y) Defines a translation, using only the value for the Y-axis

scale(x,y) Defines a 2D scale transformation

rotate(angle) Defines a 2D rotation, the angle is specified in the parameter

For any CSS keyframe animation we create, we have to first define the animation. Basically, tell

CSS what it is that should happen and we also need to assign that animation to a specific element

or elements in your HTML. We can do these two steps in any order.

@keyframes
We will start creating our CSS animation by defining it's keyframes using the @keyframes rule.

@keyframes are essentially a list describing everything that should happen over the course of the

animation. We define the values for the animating properties at various points during the animation and

any property that we will see change over the course of one's cycle of an animation.

o The @keyframes rule works like most other CSS rules, anything contained within its curly braces

are considered part of that block.

o The second step to our @keyframes rule is giving our animation a name. It's really

important to name the animation because without a name, it would not be able to assign

the animation to an element.

.square{height:100px; width:100px; background-color:magenta; transition:
background-color 3s, border-radius 1s;}
.square:hover{background-color: olive; border-radius: 50%; }

CSS

Chapter 3 – Cascading Style Sheet, CSS Page 54 of 98
Material prepared by Prof. Huixin Wu

@keyframes slide{
 from {transform: translateX(0px);}
 to {transform: translateX(450px);}
}

There are a few options available to us for how we can define each @keyframes within our

@keyframes rule:

o from, to: You define where to animate from and where to animate to.

Activity) create an animation that will move an image from one place to another within the x-axis.

For this exercise, we will download two images, one for the moving object and the other one as a back

image. Once we have the images, will be create two containers for each of the images using <div> with

position relative and absolute respectively.

Once we have the images set up, we can start writing the css animation using @keyframes. We

are going to name this animation slide. The animation will make the element to move from left to

right. The basic rules to use @keyframes are:

1. Use @keyframes to create the animation frame

2. Assign a name to the keyframe

3. Specify what do you want the animation to do. For this project, we want the image to move from

left to right. For this, we need to transform the element within the X axis from position 0 to 220px.

1 2

3

<h3>CSS animation using @keyframes with attributes from - to </h3>
<section class="mountainImage">
 <div class="busImage"></div>
</section>

HTML

.mountainImage{
 width: 700px;
 height: 500px;
 position: relative;
 margin: auto;}
.busImage{
 width: 250px;
 height: 150px;
 position: absolute;
 bottom: 0;}

CSS

Chapter 3 – Cascading Style Sheet, CSS Page 55 of 98
Material prepared by Prof. Huixin Wu

.busImage{
 animation-name: slide;
 animation-duration: 3s;

Now that we have the animation created, we need to add it into the image that we want to be

animated, in our case, we will add the animation to the element that has the bus image, which has

the class name busImage:

 div class="busImage"></div>

Now in css, we call for the class name and add some animation properties to it:

1. animation-name: slide; This tells our image with class name busImage to apply the

@keyframes animation named slide

2. animation-duration: 2s; The second property we need to define is the animation

duration. Our keyframes define what should change over the course of an animation, but they don't

give any indication as to how long this should take, so that's what we do in animation duration. For

this case, our animation slide is set to 2 seconds.

3. The animation-iteration-count property is also a good one to set for yourself even though

it has a default value. This one determines how many times the animation will play. By default, the

animation runs once, but we can set it runs infinite times.

4. animation-delay property sets the waiting before the animation actually executes.

1
2

 animation-iteration-count: 2;

3

animation-delay: 2s; 4

Chapter 3 – Cascading Style Sheet, CSS Page 56 of 98
Material prepared by Prof. Huixin Wu

5. animation-fill-mode is a way of telling the animating element what to do outside of the actual

duration of its animation and it can take four values: none, backwards, forwards, and both. The

default value is none. If we use the value forwards, the image will stay at the position at the end of

the animation.

6. animation-direction let us to manipulate what order our keyframes are executed in.

Animation-direction can be set to normal, reverse, alternate, and alternate-reverse.

An animation-direction of normal means that all iterations of the animation will be played as

specified. So your keyframes will play from start to end. That means your keyframes will play from

your from keyframe to your to keyframe, or your 0% percent keyframe to your 100% keyframe

exactly in the order that you wrote them.

The animation direction of reverse means that all iterations of your animation will be played in

the reverse direction. Your last keyframe will be played first, and your first keyframe will be played

last. So this would play your animation from your to keyframe to your from keyframe, or your

100% keyframe to your 0% keyframe.

An animation-direction of alternate means that the direction of your animation will alternate

each iteration of the animation. It will play in the normal direction the first time. So that would be

0% keyframe to 100% keyframe, and in the reverse direction the second time. So that would be

the 100% keyframe back to 0%. alternate can only be used if your animation plays more than

once because otherwise you won't have any space to see the alternating. So we'll change our

animation iteration count to two. With those two small changes made, we'll go back to our robot

and see how it's changed.

An alternate-reverse works in very much the same way as alternate, but it starts playing

your animation in the reverse direction first, and then normal. alternate-reverse works in

much the same way as alternate, it plays in reverse the first time, and then forwards, but it still

plays twice.

animation-fill-mode: forwards; 5

animation-direction: alternate; 6

Chapter 3 – Cascading Style Sheet, CSS Page 57 of 98
Material prepared by Prof. Huixin Wu

animation-timing-function is the way speed is distributed across the duration of our

animation. The animation-timing-function keywords include ease, linear, ease-in, ease-out, and

ease-in-out.

With the linear easing our robot moves across the screen at the same constant speed for the

entire animation. Linear easing creates a constant speed of motion that never changes at all. This

is often perceived as mechanical motion because nothing in real life actually moves like that.

ease allows the animation to start and slowly and then speed up to a uniform speed.

ease-in has a distinct starting slow and then speeding up as the image reaches it's destination.

ease-out is the opposite of ease-in. The image starts at a higher speed and then slows down as

it gets to it's destination.

ease-in-out combines the effects of ease-in and ease-out. It starts out a little bit slow, hits a

top speed in the middle of the animation, and then slows down as it reaches the end.

Infinitely looping animation

CSS is great for looping animation because it makes it possible to set an infinite loop with much

less code than other methods.

Example) Using the previous exercises, creating a couple of animated clouds that continently drift

across the sky with different distance and speed. For this, we can download a cloud image and

create three containers of different sizes for each cloud.

Since the clouds are displayed on top of the back image, the containers’ position must be set to

absolute. We can also set different width and height to the clouds container and also the top

position to each cloud.

animation-timing-function: ease; 7

<div class="mountainImage">
 <div class="busImage"></div>
 <div class="sunImage"></div>
 <div class="cloud1"></div>
 <div class="cloud2"></div>
</div>

HTML

Chapter 3 – Cascading Style Sheet, CSS Page 58 of 98
Material prepared by Prof. Huixin Wu

Once we have the HTML and CSS set, now we can set the animation using the @keyframes. Since

we want the clouds to flow from left to right, we can use the property from to to

We are going to use the same animation for all three clouds, but we are going to adjust the

properties to make each cloud to behave in a slightly different way. For example, we can set

different animation-iteration-count to each cloud.

/* animation clouds */
.sunImage{
 width: 30%;
 height: 20%;
 position: absolute;
 top: 0;
}
.cloud1{
 width: 30%;
 height: 26%;
 position: absolute;
 top: 20px;
}
.cloud2{
 width: 30%;
 height: 26%;
 position: absolute;
 top: 60px;
}

css

@keyframes cloudsFlowing {
 from {transform: translateX(0);}
 to {transform: translateX(500px);}
}

css

. sunImage{
 width: 30%;
 height: 20%;
 position: absolute;
 top: 0;
 animation-name: cloudsFlowing;
 animation-duration: 30s;
 animation-timing-function: linear;
 animation-iteration-count: infinite;
}

css

sunImage

cloud1

cloud2

Chapter 3 – Cascading Style Sheet, CSS Page 59 of 98
Material prepared by Prof. Huixin Wu

The animation properties can also be written in one line using the property animation. For example,

we can simplify the following properties:

animation-name: cloudsFlowing;
 animation-duration: 30s;
 animation-timing-function: linear;
 animation-iteration-count: infinite;

using animation property, we can write each property values in one line and separate the values

with a space:

animation: cloudsFlowing 30s linear infinite;

Now, we can apply the cloudsFlowing animation to the other two clouds with 8 and 5 seconds

respectively.

opacity

One of the transition properties is opacity. Opacity property happens when a new value is assigned

to it. It will cause a smooth change between the old value and the new value over a period of time.

The value of opacity is ranged in between 0 and 1 where 0 is clear and 1 is the full color of the

element.

Example) Using the previous animation, make the clouds to be almost half visible when they reach

the edge of the right side.

.cloud1{
 width: 30%;
 height: 26%;
 position: absolute;
 top: 20px;
 animation: cloudsFlowing 10s linear infinite;
}
.cloud2{
 width: 30%;
 height: 26%;
 position: absolute;
 top: 60px;
 animation: cloudsFlowing 6s linear infinite;
}

css

Simplify the
animation
lines using
animation
property

Chapter 3 – Cascading Style Sheet, CSS Page 60 of 98
Material prepared by Prof. Huixin Wu

 CSS animation using “%” time frame

CSS animation in an element can be slip using % time frame. For example, from a @keyframes

animation using from to to attributes, we can replace from to 0% and to to 100%:

@keyframes cloudsFlowing{
 from{ transform: translateX(0px); opacity:1;}
 to{transform: translateX(250px);opacity:0.5;}
}

@keyframes cloudsFlowing{
 0%{ transform: translateX(0px); opacity:1;}
 100%{transform: translateX(250px);opacity:0.5;}
}

Example) Create an animation that will move a square from one position to another and change

its background color at the different position. The total time of the animation is 10s and the

animation will repeat 20 times.

To understand how the position works on an element, first we need to create a container to place

the square:

@keyframes cloudsFlowing {
 from{transform: translateX(0); opacity: 0.9;}
 to{transform: translateX(500px); opacity: 0.3;}
}

css

<h3> CSS animation using "%" time frame </h3>
<div class=" frameContainer">
</div>

HTML

Chapter 3 – Cascading Style Sheet, CSS Page 61 of 98
Material prepared by Prof. Huixin Wu

Once we have the container for the square, we create the square that sits inside the container:

After the square is set, we need to create the animation using % time frame as the following:

Total time 10 seconds

Time frame
0% 25% 50% 75% 100%

0 to 2 secs 2.1 to 4 secs 4.1 to 6 secs 6.1 to 8 secs 8.1 to 10 secs

background

color
Darkblue Darkred Green Yellow darkblue

border-radius
0%

(squared shape)

50%

(circled shape)

0%

(squared shape)

50%

(circled shape)

0%

(squared shape)

Position Top-left Bottom-right Top-right Bottom-left Top-left

.frameContainer{
 width: 1500px;
 height: 600px;
 background-color: lightblue;
 position: relative;
}

CSS

<div class="frameContainer">
 <div class="animationSquare"></div>
</div>

HTML

.animationSquare{
 width: 100px;
 height: 100px;
 background-color: rgb(10,50,100);
 position: absolute;
}

CSS

Add this line to create a

square using <div> element

h
ei

gh
t:

 6
0

0
p

x;

h
ei

gh
t:

 5
0

0
p

x;

height: 100px;

Width:1500px;

width: 1400px;

Chapter 3 – Cascading Style Sheet, CSS Page 62 of 98
Material prepared by Prof. Huixin Wu

To create the animation, we need to understand the position first. The position of an element is

measured from the top-left corner of the element:

One complete cycle of the animation:

Position: top-left
top:0px;
left:0px;

Position: bottom-right
top:500px;
left:1400px;

0% 25% 50% 75%

100%

Position: top-left
top:0px;
left:1400px;

Position: top-left
top:500px;
left:0px;

Chapter 3 – Cascading Style Sheet, CSS Page 63 of 98
Material prepared by Prof. Huixin Wu

Rotating animation

Rotation is a CSS property that defines a 2D rotation and the rotation angle is specified within the

parenthesis. For example, if we want to rotate an element 200 degree clockwise, we can write:

rotate(200deg). If we want to rotate an element 200 degree counter-clockwise, we can write:
rotate(-200deg)

Activity) Create an animation that will rotate an image clockwise 180 degree and then 360 degree

counter-clockwise. The animation duration will be 6s and it will repeat 10 times.

 For this animation, first, we create the animation structure in HTML and CSS:

@keyframes animation_square{
0% {background-color: darkblue; left: 0px; top: 0px; border-radius: 0%;}
 25%{background-color: darkred; left:1400px; top: 500px; border-radius: 50%;}
 50%{background-color: green; left: 1400px; top: 0px; border-radius: 0%;}
 75%{background-color: yellow; left: 0px; top: 500px; border-radius: 50%;}
 100%{background-color: darkblue; left: 0px; top: 0px;border-radius: 0%;}
}

CSS

<h3>animation using transform property "rotate"</h3>
 <div class="frameRotation">
 <div class="rotationImage">

</div>

 </div>

HTML

.frameRotation{
 width: 1500px;
 height: 500px;
 background-color: lightblue;
 position: relative;}
.rotationImage{
width: 200px;
 height: 200px;
 position: absolute;
 top: 20%;
 left: 40%;
 animation: spin 10s 20;
}

CSS

Chapter 3 – Cascading Style Sheet, CSS Page 64 of 98
Material prepared by Prof. Huixin Wu

Once the structure is set, we can start the animation according to the following time frame:

Total time 6 seconds

Time frame 0% 30% 70% 100%

rotation Rotate 0 deg Rotate 180 deg Rotate -360 deg Rotate 0 deg

Zooming an image

CSS animation transform property has value scale() to create zoom-in and zoom-out effect on an

element. There are different parameters that we can use within the scale’s parenthesis, for now, we

are going to use one value inside the parenthesis. The highest value is 1 and the lowest value is 0.

1 means 100% of the actual element’s size, and 0 means 0% of the actual element’s size.

100% of the element size
transform: scale(1);

30% of the element size
transform: scale(0.3);

@keyframes spin {
 0%{transform: rotate(0deg);}
 30%{transform: rotate(180deg);}
 70%{transform: rotate(-360deg);}
 100%{transform: rotate(0deg);}
}

CSS

Chapter 3 – Cascading Style Sheet, CSS Page 65 of 98
Material prepared by Prof. Huixin Wu

Example) Create an animation that the element will zoom-in to 100% of the image and zoom-

out to 30% of the image. The animation duration is 10s and it will play 5 times.

<h3>animation using transform property "scale"</h3>
 <div class="scaleAnimation">

<div class="zoomImage"></div>
 </div>

HTML

.zoomImage{
 width: 80%;
 height: 80%;
 top: 10%;
 left: 10%;
 background-color: red;
 position: absolute;
 animation: zoomAnimation 10s 5;}
@keyframes zoomAnimation {
 0%{transform: scale(0);}
 50%{transform: scale(1);}
 100%{transform: scale(0.3);}
}

CSS

Time frame = 0%

 scale(0)
Time frame = 50%

 scale(1)
Time frame = 100%

 scale(0.3)

